Think Logically

From wiki
Revision as of 11:43, 29 January 2015 by Admin (Talk | contribs)

Jump to: navigation, search

When something doesn't work right, the temptation is often to "try this," and then "try that," or "maybe I'll connect this the other way and see if that works...." This is the trial-and-error, shotgun approach and rarely is it successful. Worse yet, it may cause further damage and make the issue even harder to solve. Troubleshooting blinky-flashy electronics is much easier if you follow a logical set of questions -- steps if you will -- before you jump in and start dismantling your hairline at the same time you're dismantling your equipment. If you're getting started in this hobby, here are some ideas to get you going...

  • Ask the right questions; provide information.. "Why don't my lights work?" is often the first complaint from beginners but it's a pretty open-ended, vague question that only beckons more questions. What do you mean by "don't work?" Do they come on at all? Do they come on but they don't dim like you want them to? Do they come on but not with the right channel control command? Do they come on and stay on and don't turn off? Do they not come on at all, ever? Do they come on but then gradually just go out on their own? Do they come on and 'kind of' work but then they don't turn all the way off? Are you using incandescent lights or LED lights? Are you using strings of A/C lights or strings of DC LEDs, or are you using 'dumb RGB' lights or 'smart RGB' pixels? So let's begin by reframing the question into one that helps bring the issue into a different focus. Instead of "why don't my lights work?" ask something like this: "What would cause all the strings of lights to come on immediately when I power up my Renard SS24 controller?" Or instead of saying "What's wrong with my controller?" ask something like, "I have a Renard-Plus TR16 and why would one of the channels stay lit all the time while all the other channels work perfectly?"
  • Think cause-and-effect. "When I do this, that happens" is a good start to diagnosing a problem. For example, "When I plug the controller into power, I hear a little 'pop' and the fuse blows immediately and nothing works after that." If you're like me, you'll replace the fuse and try it again, probably blowing another fuse. But trying it a third time to see if the problem goes away by itself is just dumb. So think to yourself, "What is the fuse for and what part of the circuit is it in?" Then unplug the controller from power for safety, turn it over and follow the circuit traces from the power connector to the fuse, then from the fuse to the next place, and so forth. Also follow the OTHER set of circuit traces from the other side of the power connector to the next place, to the next, and so on. What you're looking for in this example is something that's causing a short circuit, which then trips the fuse to prevent more damage. Chances are you'll find there's a wire that's come loose somewhere or you might even see a darkened/sooty area on the board where the short circuit occurred. But the concept to learn here is that electricity flows on a pathway on the circuit board. It goes from point A to point B, to point C, etc. With electricity, there is always a "source" and a "return" because without one or the other, electricity can't flow from place to place.